Interest rate conversion \( i_2 = \sqrt{(1+i_1)} \)
Is it a capitalization or discounting function? \( f(t) = \frac{ t }{1+exp{-3x}} \)
Force of interest \( \delta(t) \)\(= \frac{ f'(t) }{ f(t) } \)
Annuities \( a_{n,i} \)\(\;=\; \frac{1-(1+ir)^{-t}}{ir} \)
Fund or value at certain time \( F(3) \)\(= R a_{n,i}+ R s_{n,i'} \)
Average arithmetic maturity \( t^A \) =\( \frac{\sum_{t=1}^T tR_t}{\sum_{t=1}^T R_t} \)
Average maturity \( \Bigl( \sum_{k=1}^{n} R_k \Bigr) \)\( g(avgMat) \)\( = \sum_{k=1}^n R_k g(t_k) \)
Duration \( D \)\(\;=\; \sum^T \) \( \frac{t \; \cdot \; R_t \cdot (1+ir)^{-t}}{R_t \cdot (1+ir)^{-t}} \)
Net present value (VAN/NPV/REA) \( {NPV \atop REA} = \sum_{t=1}^T \frac{R_t}{(1+i)^t} \)
IRR/TIR \( \sum_{t=1}^T \frac{R_t}{(1+IRR)^t} = 0 \)
Payback period \( R1+R2 \ge 0 \) so the Payback period is 2
Simple amortization
Italian amortization