Domanda 0
Domanda 1
Domanda 2
INPUTS - WHAT TO TYPE IN
\(n\) is the number of the years of the rent, which is different from the number of cash flows (which are \(n-1\). If the cash flows are from \(0\) to \(n-1\) then the annuity is immediate, if the cash flows are from \(1\) to \(n\) then the annuity is posticipate.
THEORY - THE IDEA OF THE STEPS
Posticipate annuity
\( a_{n,\;ir} \)\(\;=\; \frac{1-(1+0.1)^{-10}}{0.1} \)\(\;=\; 6.145 \) |
Immediate annuity
\( \ddot a_{n,\;ir} \)\(\;=\; (1+ir)\frac{1-(1+0.1)^{-10}}{0.1} \)\(\;=\; 6.759 \) |
Perpetuity annuity
\( a_{\infty,\;ir} \)\(\;=\; \frac{1}{ir} \)\(\;=\; 10 \) |
Perpetuity immediate annuity
\( \ddot a_{\infty,\;ir} \)\(\;=\; (1+ir)\frac{1}{ir} \)\(\;=\; 11 \) |
Deferred posticipate annuity
\( _{m}a_{n,\;ir} \)\(\;=\; (1+0.1)^{-5}\frac{1-(1+0.1)^{-10}}{0.1} \)\(\;=\; 2.369 \) |
Posticipate future annuity
\( s_{n,\;ir} \)\(\;=\; \frac{(1+0.1)^{10}-1}{0.1} \)\(\;=\; 15.937 \) |
Immediate future annuity
\( \ddot s_{n,\;ir} \)\(\;=\; (1+0.1)\frac{(1+0.1)^{10}-1}{0.1} \)\(\;=\; 17.531 \) |