Force of Interest

Domanda 0


Quale opzione è vera riguardo il regime di interesse composto \( (1+ir)^t \)

Domanda 1


Qual è la forza di interesse della funzione \( f(t)=\) \(\sqrt{10+2t} \)

Domanda 2


Qual è la funzione associata della forza di interesse \( \delta(t)=\) \(log(t^3)+7 \)

INPUTS - WHAT TO TYPE IN

Enter your capitalization/discounting (\(f(t)\)) function and compute the or force of interest (\(\delta(t)\)) or viceversa.

How to write a proper function:

  • \(2t+5 \;\Rightarrow \;\) 2*t+5
  • \( \frac{1}{1+t} \;\Rightarrow \;\) 1/(1+t)
  • \(t^2 \;\Rightarrow \;\) t^2
  • \(t^{-2} \;\Rightarrow \;\) t^(-2)
  • \((1+ir)^{t+1} \;\Rightarrow \;\) (1+ir)^(t+1)
  • \( \sqrt{1+t} \;\Rightarrow \;\) (1+t)^(1/2)
  • \( e^{-0.2t} \;\Rightarrow \;\) exp(-0.2*t)

THEORY - THE IDEA OF THE STEPS

  • if you have the function \( f(t) \) \[ \delta(t) = \frac{ f'(t) }{ f(t) } \] First compute the first derivative of the function, then divide it by the initial function.
  • if you have the force of inerest \( \delta(t) \) \[ f(t) \;=\; e^{ \int_0^t \delta (t) dt } \] First compute the integral from \(0\) to \(t\) of the force of interest, then take its exponential.

Input

Result