Domanda 0


La scadenza media aritmetica \( \bar t\) della seguente rendita (il tempo è espresso in anni),
\(t\) 1346
\(R_t\)700210X280
è pari a 2.958333 anni. L’importo X (X > 0) è pari a

Domanda 1


La scadenza media aritmetica \( \bar t\) della seguente rendita (il tempo è espresso in anni),
\(t\)1346
\(R_t\) 124002480X9920
è risultata pari a 3.384615 anni. L’importo X (X > 0) vale:

Domanda 1


A cosa corrisponde la scadenza media aritmetica del seguente progetto finanziario?
Tempi1998200020022003
Valori 66w-1002444

INPUTS - WHAT TO TYPE IN

  • TIMES: when the cash flows are received (1,2,3,... or 2021, 2030, 2032,...).
  • VALUES: the cash flows (-100, 7, 90*a,...).
  • OBJECTIVE - "I want to find the average arithmetic maturity": if the have both the times and the values without any unknown parameter.
  • OBJECTIVE - "I have the average arithmetic maturity, I want to find other stuff": select it if you have the maturity and you want to find the value at time 5. Then put in the "Average arithmetic maturity" the maturity that you have and put in the value at time 5 an "x" or any letter, because you have to find it. It will give you the "x" or the letter you put in.

THEORY - THE IDEA OF THE STEPS

(!) The average ARITHMETIC maturity and the average maturity have two different formulas. The average maturity also considers the discounting effect. The average ARITHMETIC maturity here considered is the simple average of the times weighted by the cash flows. \[ t^A = \sum_{t=1}^T tR_t/\sum_{t=1}^T R_t \]

Input

Result